If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+28m-25=0
a = 7; b = 28; c = -25;
Δ = b2-4ac
Δ = 282-4·7·(-25)
Δ = 1484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1484}=\sqrt{4*371}=\sqrt{4}*\sqrt{371}=2\sqrt{371}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{371}}{2*7}=\frac{-28-2\sqrt{371}}{14} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{371}}{2*7}=\frac{-28+2\sqrt{371}}{14} $
| y/7-1=1 | | 8n=9n+17 | | 4(z-73)-23=65 | | n-4=5(n+2) | | 2c-10=(c-5)2 | | -3(-4r-8)=-3 | | (7x-4)°+25°=90° | | 10-2q=2+2Q | | 7(y+7)=49-y | | (7x-4)°+24°=90° | | 6n-7=1(n+8) | | 1=y+5 | | 5x+9/6+8x-9/2=-32 | | 6+14(x-8)=95 | | 3(-x+6)=-9 | | y=30-1500 | | 2=-9=22-n | | -3x+26=59 | | 35=16t-29 | | h^2=7 | | 7x+152=180 | | n^2+53=-17 | | 0.5(x+8)+3.2x=10 | | 6x+2=9x-9 | | a^2=-62 | | 13x+1+9x=180 | | f^2+0=0 | | 9x-5=4+3x | | 7/4v=35 | | 6y+9=4y-3 | | 147-v=289 | | 4.49-3.2b=-5.9b-5.7b-19.87 |